[ HDU6309 ] Absolute

题目大意:给定n个区间\([l_i , r_i]\),\(-10^6 \leq l_i \leq r_i \leq 10^6\)且\(l_i , r_i\)都为整数,\(x_i\)为对应范围内的一个随机实数,求\(| \sum{x_i} | \)的期望。\( n \leq 15\),答案对998244353取模。

题解:和这道题基本上是一样的,容斥方法一样。

分成\(\sum{x_i}\)小于0和大于0两部分来考虑,两部分的做法一样。以小于0的部分为例,首先将范围进行调整,将\(x_i\)的范围调整为\([0,r_i – l_i]\),那么符合条件的范围即\( \sum{l_i} + \sum{x_i} < 0\),即\( 0 \leq |\sum{x_i}| < |\sum{l_i}| \),求此时\( |\sum{l_i}| – |\sum{x_i}|\)的期望。容斥的方法和上面的那个是一样的,不同之处在于这题求的不是概率,还要考虑\(\sum{x_i}\)的期望。这里可以通过积分求出,当\[0 \leq x_i \leq a\] \[0 \leq \sum{x_i} \leq a\]时,该部分\(a – \sum{x_i}\)的期望为\(\frac{a^n}{xpro \cdot n!}\),其中\(xpro = \prod{(r_i – l_i)}\)。(不是很严谨,意会一下即可)


page views : 67 views

发表评论

电子邮件地址不会被公开。 必填项已用*标注